Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
project:sprinklers [2024-06-08 Sat wk23 12:02] – [Sprinkler Solenoid 24VAC Woes] baumkp | project:sprinklers [2024-08-24 Sat wk34 16:27] (current) – [References] baumkp | ||
---|---|---|---|
Line 15: | Line 15: | ||
To fully resolve this issue I purchase a single channel digital oscilloscope and tested the voltage at the controller out and the node boxes closer to the solenoid valves. | To fully resolve this issue I purchase a single channel digital oscilloscope and tested the voltage at the controller out and the node boxes closer to the solenoid valves. | ||
- | I would consider normal supply voltage tolerance to be minimum +/-10% this aligns with the IEC standard for electrical power distribution. So a 24VAC system should be able to absolutely reliably operate between 21.6 to 26.4 VAC. As the solenoid operation voltage was typically between 25 - 26VAC this condition is meet. The stand-by voltage was not a concern for the solenoid operation and the controller | + | I would consider normal supply voltage tolerance to be minimum +/-10% this aligns with the IEC standard for electrical power distribution. So a 24VAC system should be able to absolutely reliably operate between 21.6 to 26.4 VAC. As the solenoid operation voltage was typically between 25 - 26VAC this condition is meet. The stand-by voltage was not a concern for the solenoid operation |
Next I measured the DC resistance of a new solenoid at 33.1 Ω. Based upon the specification printed on the Solenoid 24 VAC, 50/60 Hz, Holding 0.25 Amp and inrush 0.43 Amp maximum I calculated the solenoid impedance to be 96.0 Ω. This means the solenoid holding reactance calculates as 90.1 Ω. The solenoid apparent power is 6.0 VA and real power 2.07 W. With 25.2 VAC supply at the solenoid this becomes 0.264 A current, 6.68VA apparent power and 2.3 W real power. | Next I measured the DC resistance of a new solenoid at 33.1 Ω. Based upon the specification printed on the Solenoid 24 VAC, 50/60 Hz, Holding 0.25 Amp and inrush 0.43 Amp maximum I calculated the solenoid impedance to be 96.0 Ω. This means the solenoid holding reactance calculates as 90.1 Ω. The solenoid apparent power is 6.0 VA and real power 2.07 W. With 25.2 VAC supply at the solenoid this becomes 0.264 A current, 6.68VA apparent power and 2.3 W real power. | ||
A USA based brochure for the K-Rain Valve KR7101 gives the following specification for the valve: Voltage: 24VAC 60 cycles, 0.4 amps in rush, 0.2 amps holding. Pressure 20 psi minimum to 150 psi. This aligns well with the calculation showing 0.21 Amp at 24 VAC 60 Hz. | A USA based brochure for the K-Rain Valve KR7101 gives the following specification for the valve: Voltage: 24VAC 60 cycles, 0.4 amps in rush, 0.2 amps holding. Pressure 20 psi minimum to 150 psi. This aligns well with the calculation showing 0.21 Amp at 24 VAC 60 Hz. | ||
- | I measures the voltage across the resistor with the Oscilloscope at between 2.81 to 2.88 VAC RMS and resistor was measured with a multimeter as 12.1 Ω, so circuit current is 0.232 to 0.238Amp. | + | I measures the voltage across the resistor with the Oscilloscope at between 2.81 to 2.88 VAC RMS and resistor was measured with a multimeter as 12.1 Ω, so circuit current is 0.232 to 0.238Amp. |
I measure the voltage across the resistor when operating an old solenoid valve and it was 3.03 VAC RMS, with calculated current of 0.25 Amp. Interestingly the waveform across the resistor on the new solenoids looked distorted, more triangular, whereas the old solenoid valves waveform was much more sinusoidal. | I measure the voltage across the resistor when operating an old solenoid valve and it was 3.03 VAC RMS, with calculated current of 0.25 Amp. Interestingly the waveform across the resistor on the new solenoids looked distorted, more triangular, whereas the old solenoid valves waveform was much more sinusoidal. | ||
Line 41: | Line 41: | ||
**Summary** | **Summary** | ||
+ | |||
After 12 weeks of reliable operation with no further solenoid failure the use of a 12 Ω resistor to limit solenoid current and power draw has rectified the solenoid failure problem. | After 12 weeks of reliable operation with no further solenoid failure the use of a 12 Ω resistor to limit solenoid current and power draw has rectified the solenoid failure problem. | ||
+ | |||
====References==== | ====References==== | ||
*[[https:// | *[[https:// | ||
Line 59: | Line 61: | ||
{{: | {{: | ||
- | <- project: | + | <- project: |